0%

pt文件加载到安卓相关知识

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

把pt文件放到assets目录下面

sourceSets {
main {
assets.srcDirs = ['src/main/assets']
}
}


implementation 'org.pytorch:pytorch_android:1.12.1' // PyTorch Android
implementation 'org.pytorch:pytorch_android_torchvision:1.12.1' // 包含TorchVision


public static void example(Context context) throws IOException {
int airType = 0;
int M = 3000;
int inputSize = 1;
int maxRows = 3000; // CSV 数据总行数
String csvFilename = "air_data.csv";

// PT 模型路径
String ptModelPath = context.getFilesDir() + "/air_model_1.pt";
copyAssetToInternal(context,"air_model_1.pt", ptModelPath);

// 1. 读取 CSV
float[][] data = readCSVFromAssets(context, csvFilename, airType, maxRows);
int length = data.length;

// 2. 构造 trainX 和 x
float[][] trainX = new float[M][inputSize];
float[][] x = new float[length][inputSize];
for (int i = 0; i < M; i++) trainX[i][0] = data[i][0];
for (int i = 0; i < length; i++) x[i][0] = data[i][0];

// 3. 设置训练时 mean/std(必须和训练时一致)
float trainMean = 12.90614f;
float trainStd = 8.80730f;

// 4. 加载 PT 模型
Module module = Module.load(ptModelPath);
if (module != null) {
Log.d("Torch", "Module 非空,说明加载成功");
} else {
Log.e("Torch", "Module 是 null,加载失败");
}

// float[][] out = predict(module, trainX, x, trainStd, trainMean, inputSize, length, M);

// getWarn(module,data,0,3000,inputSize,length,10,3.0f,3.0f,trainMean,trainStd);
// 设置阈值 0.1,可根据训练数据调整
// boolean[] abnormal = detectAnomalies(out, x, 0.1f);
// Result result = new Result(out, abnormal);
// 5. 调用模型 forward

float[][] data2 = readCSVFromAssetsAll(context, csvFilename, maxRows);

// getPtData(data2,module,context);
// getTestPt(module);
// Object[] results = DateutilsGetDataTest.getDataTest(context,inputSize,60,csvFilename,3);//测试数据
Object[] results = DateutilsGetDataTest.getDataAndroidWithLog(context,inputSize,60,csvFilename,1);//真实数据
getVcsGetDatePt(results,module);
}

//获取cvs数据,归一化 反归一化
public static void getVcsGetDatePt(Object[] results,Module module){
int length = 3120;
int inputsize = 1;


Tensor testXTensor = (Tensor) results[0];
Tensor testYTensor = (Tensor) results[1];
int lengethtensor = (int) results[2];
float mean= (float) results[3];
float std = (float) results[4];


Tensor trainMeanTensor = Tensor.fromBlob(new float[]{mean}, new long[]{1});
Tensor trainStdTensor = Tensor.fromBlob(new float[]{std}, new long[]{1});
Tensor inputSizeTensor = Tensor.fromBlob(new long[]{inputsize}, new long[]{1});
Tensor lengthTensor = Tensor.fromBlob(new long[]{lengethtensor}, new long[]{1});

IValue[] inputs = new IValue[]{
IValue.from(testXTensor),
IValue.from(testYTensor),
IValue.from(trainStdTensor),
IValue.from(trainMeanTensor),
IValue.from(inputSizeTensor), // int
IValue.from(lengthTensor) // int
};


IValue output = module.forward(inputs);

// 解析输出 (模型返回 Tuple(Tensor, Tensor))
Tensor outTensor = output.toTuple()[0].toTensor();
float[] outArray = outTensor.getDataAsFloatArray();

// 打印前5行
Log.i("xqm", "PT model output 前5行:");
for (int i = 0; i < Math.min(5, length); i++) {
Log.i("xqm", String.valueOf(outArray[i]));
}


IValue[] outputs = output.toTuple();
Tensor firstOutput = outputs[0].toTensor(); // 第一个预测结果 Tensor
Tensor secondOutput = outputs[1].toTensor(); // 第二个 Tensor,如果需要
firstFifity(firstOutput,mean,std);

float[] outFlat = outTensor.getDataAsFloatArray();

float[][] out_o = new float[length][inputsize];
for (int i = 0; i < length; i++) {
for (int j = 0; j < inputsize; j++) {
out_o[i][j] = outFlat[i * inputsize + j] * std + mean;
}
}

for (int i = 0; i < Math.min(5, length); i++) {
StringBuilder sb = new StringBuilder();
for (int j = 0; j < inputsize; j++) {
sb.append(out_o[i][j]).append(",");
}
Log.d("TorchOut", "xqm Android output line " + i + ": " + sb.toString());
}


}



public static void firstFifity(Tensor outputTensor, float trainMean, float trainStd){
float[] outputArray = outputTensor.getDataAsFloatArray();

// 反归一化
float[] realOutput = new float[outputArray.length];
for (int i = 0; i < outputArray.length; i++) {
realOutput[i] = outputArray[i] * trainStd + trainMean;
}

// 打印前50个预测值
int printCount = Math.min(50, realOutput.length);
for (int i = 0; i < printCount; i++) {
Log.d("InferenceOutput", "Pred[" + i + "] = " + realOutput[i]);
}
}

// 从 assets 拷贝模型到内部存储
public static void copyAssetToInternal(Context context,String assetName, String destPath) {
try {
InputStream is = context.getAssets().open(assetName);
File outFile = new File(destPath);
FileOutputStream os = new FileOutputStream(outFile);
byte[] buffer = new byte[1024];
int read;
while ((read = is.read(buffer)) != -1) {
os.write(buffer, 0, read);
}
is.close();
os.flush();
os.close();
} catch (IOException e) {
e.printStackTrace();
}
}



//读取csv列表数据,并组装成pt需要的数据返回
public static Object[] getDataAndroidWithLog(Context context,int inputsize, int M, String assetFileName, int airType) throws IOException {
// 1. 读取 assets 目录下 CSV
AssetManager assetManager = context.getAssets();
InputStream is = assetManager.open(assetFileName);
BufferedReader br = new BufferedReader(new InputStreamReader(is));

br.readLine(); // 第一行是表头,跳过
List<Float> dataList = new ArrayList<>();
String line;
while ((line = br.readLine()) != null) {
String[] tokens = line.split(",");
dataList.add(Float.parseFloat(tokens[airType]));
}
br.close();

dataList = new ArrayList<>(dataList.subList(0, Math.min(3120, dataList.size())));//后续删掉

int totalLength = dataList.size();
float[] data = new float[totalLength];
for (int i = 0; i < totalLength; i++) data[i] = dataList.get(i);

Log.d("xqm", "总数据: " + totalLength);

Log.d("xqm", "原始数据前10条: " + Arrays.toString(Arrays.copyOf(data, Math.min(10, totalLength))));

// 2. 均值和标准差
float sum = 0f;
for (float v : data) sum += v;
float mean = sum / totalLength;

float std = 0f;
for (float v : data) std += (v - mean) * (v - mean);
std = (float)Math.sqrt(std / totalLength);

Log.d("xqm", "mean: " + mean + ", std: " + std);

// 3. 归一化
float[] normalizedData = new float[totalLength];
if (std != 0f) {
for (int i = 0; i < totalLength; i++) normalizedData[i] = (data[i] - mean) / std;
} else {
for (int i = 0; i < totalLength; i++) normalizedData[i] = data[i] - mean;
}
Log.d("xqm", "归一化后前10条: " + Arrays.toString(Arrays.copyOf(normalizedData, Math.min(10, totalLength))));

// 4. Tensor 处理
int lengthTest = totalLength; // 全部数据作为测试集
float[] testY = new float[lengthTest * inputsize];
float[] testXFlat = new float[lengthTest * inputsize];

for (int i = 0; i < lengthTest; i++) {
for (int j = 0; j < inputsize; j++) {
// testY 是反归一化
if (std != 0f) testY[i * inputsize + j] = normalizedData[i] * std + mean;
else testY[i * inputsize + j] = normalizedData[i] + mean;

// testXFlat 是归一化
if (std != 0f) testXFlat[i * inputsize + j] = (testY[i * inputsize + j] - mean) / std;
else testXFlat[i * inputsize + j] = testY[i * inputsize + j] - mean;
}
}

Log.d("xqm", "testY 前10条: " + Arrays.toString(Arrays.copyOf(testY, Math.min(10, testY.length))));
Log.d("xqm", "testXFlat 前10条: " + Arrays.toString(Arrays.copyOf(testXFlat, Math.min(10, testXFlat.length))));

// 5. 保证 reshape 可整除
int newLengthTest = (lengthTest / M) * M;
float[] testXFlatTrim = Arrays.copyOf(testXFlat, newLengthTest * inputsize);

Tensor testXTensor = Tensor.fromBlob(testXFlatTrim, new long[]{M, newLengthTest / M, inputsize});
Tensor testYTensor = Tensor.fromBlob(testY, new long[]{1,lengthTest, inputsize});

return new Object[]{testXTensor, testYTensor, lengthTest, mean, std};
}